
Prediction-based Redundant Data Elimination with
Content Overhearing in Wireless Networks

Haiying Shen�, Shenghua He∗, Lei Yu† and Ankur Sarker�
�Department of Computer Science, University of Virginia, USA

∗Department of Computer Science and Engineering, Washington University in St. Louis, USA
†College of Computing, Georgia Institute of Technology, USA

�{hs6ms,as4mz}@virginia.edu, ∗shenghuahe@wustl.edu, †leiyu@gatech.edu

Abstract—This paper aims to improve wireless network
throughput by suppressing duplicate data transmissions from
network links. It has been demonstrated that IP-layer Redundan-
cy Elimination (RE) with content overhearing can significantly
improve the goodput and utilization of wireless channels in wire-
less environment. However, the integration of IP-layer RE and
wireless overhearing introduces a challenge. That is, probabilistic
wireless overhearing and the possibility of a receiver overhearing
from multiple transmitters cause the caches of a sender and a
receiver far from synchronization, which can disrupt IP-layer
RE’s correctness and degrade its performance. The previous
work deals with this challenge by the overhearing probability
estimation, which however is not efficient or scalable. In this pa-
per, we propose a Prediction-based Redundancy Elimination with
Content Overhearing method (PRECO) to address this challenge.
By exploiting prediction-based RE, PRECO does not require
cache synchronization and overhearing probability estimation,
which enables its efficient and scalable deployment. Based on
PRECO, we exploit the benefits of deploying sub-packet level
RE as a primitive IP-layer service on all nodes in wireless mesh
networks by proposing a redundancy-aware routing protocol.
Trace-driven performance evaluation shows the effectiveness and
efficiency of PRECO compared with other RE methods.

Index Terms—Redundant Data Elimination; Data Cache; Data
Prediction and Redundancy; Wireless Signal Overhearing;

I. Introduction

Wireless networks have been a widely used communi-
cation paradigm for providing mobility, city-wide Internet
connectivity and outdoor computing with low cost and fast
deployment [1], [2], [3], [4], [5], [6]. However, interference
and poor link quality severely limit the throughput of wireless
networks especially for dense large networks [7], [8]. This
paper focuses on an important class of techniques [9], [10],
[11], [12] that aim to improve wireless network throughput
by suppressing duplicate data transmissions from network
links. These techniques can eliminate the transmissions of
packets or data contents that have been previously transmitted.
Accordingly, they can be classified to two categories: packet-
based Redundancy Elimination (RE) [9] and content-based
RE [10], [11], [12], [13]. Compared with packet-based RE,
content-based RE can exploit the data locality in the workload
transferred over wireless networks. The data locality is resulted
from the user accesses to the same popular content on the
Internet and also the prevalent similarity among different
Internet data objects [10].

Recent studies have shown that vast majority of traffic
redundancy in Internet arises from duplicate data chunks of
size less than 150 bytes [14]. Accordingly, IP-layer RE at

a sub-packet level has been shown to provide significant
performance benefits in wired networks. It makes use of tightly
synchronized caches between the sender and the receiver [15],
[16], [17], [18]. The sender removes the duplicate byte string
(as small as 64B) from the packet payload by comparing it
against prior transmitted packets, and inserts a shim instead;
the receiver replaces the shim by the corresponding byte string
in prior received packets to reconstruct the full packet.

Exploiting the IP-layer RE technique with content over-
hearing in wireless networks can significantly improve the
goodput and utilization of wireless channels [12]. However,
it introduces a challenge. Probabilistic wireless overhearing
and the possibility of a receiver overhearing from multiple
transmitters cause the caches of a sender and a receiver far
from synchronization, which can disrupt RE’s correctness
and degrade its performance. REfactor [12] deals with the
challenge by overhearing probability estimation. Considering a
single access point (AP) infrastructure with multiple associated
clients, the sender AP estimates whether the receiving client
is likely to have overheard an outgoing chunk from previous
transmissions to some other clients. Based on that, the sender
computes the expected reduction of transmission time resulting
from the removal of the chunk, in consideration of possible
additional time for missing data request and retransmission in
case of cache miss at the receiver. AP removes the chunk only
when the expected reduction of transmission time is high.

Wireless overhearing probability, however, is difficult to
estimate accurately. REfactor determines the overhearing prob-
ability merely by the data transmission rate, which is simple
but very likely to be insufficiently accurate because of dynamic
channel conditions and interference in dense large wireless
networks. Insufficiently accurate estimation can cause wrong
decisions on whether or not to remove redundancy, and conse-
quently degrade the performance of RE. Moreover, to extend
to multiple AP infrastructures and mesh networks, REfac-
tor requires wireless nodes to periodically send overhearing
notifications and communicate cache contents, which incurs
significant communication cost and complex coordinations
among nodes. Similarly, to eliminate traffic redundancy over
a hop in wireless mesh networks, a node must collect such
cache information from all other nodes of which the traffic
can be overheard by the next-hop node.

Instead of using overhearing probability estimation, this
paper addresses the challenge of wireless content overhearing
for IP-layer RE using predictions. Accordingly, we propose

Prediction-based Redundancy Elimination with Content Over-
hearing (PRECO). In PRECO, the receiver stores the received
and overheard data stream in a chain of chunks. It compares
the chunks of the incoming packet with the chunk chains in the
cache. Upon a match, it is expected that the future incoming
data is very likely to match with the previously stored chunks
on the chain. The receiver sends to the sender future data
predictions that include the hashes of chunks on the chain. The
sender removes the chunk of the outgoing packet if it finds
that its hash matches with a prediction. In this way, PRECO
does not rely on overhearing probability estimation; it removes
a duplicate chunk only if the receiver has cached the chunk.
It ensures effective and robust content-overhearing based RE
over wireless links. It can also be directly used in multiple
AP infrastructure and mesh networks without overhearing
notifications and cache content communication.

PRECO has fundamentally different challenges from previ-
ous Prediction-based RE approach called PACK [19] proposed
for the cloud environment. PACK uses a large chunk size of
8KB which causes it to fail to identify finer-granularity content
redundancy. It also leads to ineffective content overhearing
since many nodes may not overhear such large chunks in
full in the wireless environment. In contrast, PRECO aims to
identify duplicate chunks of hundreds of bytes at a sub-packet
level and work on lower-bandwidth wireless links. Thus, the
transmission cost of predictions has to be considered in order
to realize the overall benefits of RE. Another new issue in
PRECO is the possibility of missing data in chunk chains.
PACK makes predictions and matches not only on the received
TCP streams but also on the overheard data streams. Therefore,
PRECO must be able to identify the stream among the multiple
streams containing matching chunks that lead to more accurate
prediction in spite of missing data in some overhead data
streams.

Furthermore, we exploit the benefits of deploying sub-
packet level RE as a primitive IP-layer service on all nodes in
wireless mesh networks. Such network-wide deployment can
provide performance benefits by eliminating redundancy on
every link. Thanks to PRECO enabling efficient network-wide
deployment in a wireless environment, we further propose
redundancy-aware source routing in wireless mesh networks in
order to derive greater performance gains from network-wide
RE. We introduce a “redundancy-aware estimated transmission
time” (RETT) metric. RETT predicts the total amount of time
it would take to send a data packet along a route by taking
into account link-level RE. When forwarding traffic from the
Internet to the mesh network, a gateway chooses the route with
the lowest RETT.

In summary, the contribution of this work is as follows.

• PRECO provides an effective, efficient and scalable solution
for content-overhearing based IP-layer RE over wireless
links.

• A redundancy-aware routing algorithm is proposed to fur-
ther exploit the benefits of network-wide RE deployment in
wireless mesh networks.

The remainder of this paper is organized as follows. Section
II reviews existing schemes for redundancy elimination in
wired and wireless networks. In Section III and IV, we present

the design of PRECO and redundancy-aware routing algorith-
m, respectively. Section V presents performance evaluation.
Section VI concludes this paper.

II. RelatedWork

A. Traffic Redundancy Elimination in Wired Networks

Several Traffic Redundancy Elimination (TRE) techniques
have been proposed for wired networks in recent years. A
protocol-independent TRE approach was first proposed in
[20], which identifies duplicate chunks at sub-packet level
with content-based hashing. Several commercial vendors have
developed such techniques into their “WAN optimization”
middle-boxes [21], [22], [23]. The successful deployment of
TRE solutions in enterprise networks motivated the exploration
of TRE deployment across the entire Internet, and redundancy-
aware routing was proposed to further enhance the benefits of
network-wide TRE [15], [18]. EndRE was proposed [17] for
eliminating traffic redundancy from server to client. The RE
method used in [16] eliminates the traffic redundancy with the
approach of delta compression. All of these approaches above
make use of tightly synchronized caches or the same reference
file between the sender and receiver, so they cannot be used
with overhearing for RE in wireless networks. PACK [19]
was proposed for the cloud environment [24]. It introduces
prediction-based RE, in which the receiver compares the
incoming data with previously received chunk chains and
notifies the sender the matched chunks. In this way, PACK
does not require cache synchronization between the sender
and receiver. However, PACK uses a large chunk size of
8KB. This causes it to fail to identify finer-granularity content
redundancy. It also leads to ineffective content overhearing
since many nodes may not overhear such large chunks in full in
the wireless environment. Yu et al. [25] proposed cooperative
end-to-end traffic redundancy elimination in both sides of
the sender and receiver for both large and small chunks for
reducing cloud bandwidth cost.

B. TRE in Wireless Networks

In Asymmetric Caching (AC) [11], the receiver finds in
its cache the matched flow segment which has the maximum
number of matching chunks compared with the ongoing traffic
flow it received, and sends back their chunk hashes. The sender
then performs RE operations based on its feedback cache
storing the received hashes and regular cache. SmartEye [26]
aggregates similar images into the same group via a semantic
hashing in the cloud and then eliminate the redundancy in
the data transmission for images collected from the smart
terminates similar as existing images in the cloud. However,
these methods fail to leverage overhearing. Several methods
have been proposed to leverage wireless overhearing to elimi-
nate redundant data transmissions. In RTS-id [9], the receiver
caches the overheard packets, and the sender adds a special
ID to the 802.11 RTS packet so that the receiver can check if
the data packet to be transmitted is in its cache. Ditto [10] and
REfactor [12] are two content-based RE approaches. In Ditto,
wireless mesh routers reassemble overheard TCP streams from
the server to the client to reconstruct application data chunks
of size roughly 8KB, and store chunks into their caches. It

Chunk1 Chunk2

Packet Payload

Chunk3 Chunk4 Chunk5

Packet Payload

TCP stream

Chunk chain
(chunk, hash, sequence number)

Chunk boundaryCCC

Fig. 1. Chunk chain of each packet.

avoids data transfers by serving the requests of clients from
the mesh routers rather than the server. REfactor exploits finer-
granularity redundancy at the sub-packet level by IP-layer RE
with content overhearing. The sender estimates the overhearing
probability of data for the receiver, and removes duplicate
chunks only if the expected transmission time reduction re-
sulting from the redundancy removal exceeds some threshold.
However, the performance gain of REfactor is vulnerable to
inaccurate estimation of overhearing probability, and also it
incurs significant communication cost when being extended
to multiple AP infrastructure and mesh networks.

III. Prediction-Based RE With Overhearing

A. Overview and An Example

In PRECO, a wireless node parses the payload of a received
or overheard packet into chunks and computes the hash value
for every chunk. The chunks from the same data stream are
linked sequentially into a chain and stored with their hash
values in a local chunk cache (Figure 1). When a receiver
receives or overhears a packet from a sender, it compares
the chunks of the packet to its local chunk cache. If a
matching chunk is found, the receiver retrieves the sequence
of subsequent chunks after the matching chunk and sends their
hashes to the sender as a prediction.

The sender performs chunking on the payload of outgoing
packets, and matches the chunks against the predictions from
the receiver. Once it finds a match, the sender removes the
chunk and replaces it with a shim containing a prediction ID
to confirm the corresponding chunk prediction. The receiver
then replaces the shim with its corresponding chunk in its
local chunk cache. PRECO is advantageous than previous
RE approaches because the predicted chunks are guaranteed
in the receiver’s local chunk cache, which increases the
prediction accuracy and hence the transmission throughput.
Further, PRECO brings benefits and efficiency in multiple AP
infrastructure, as explained below.

In Figure 2, client C1 can overhear the data transmission
from AP2 to Client C2. For successive chunks a,b,c,d and
e from multiple packet payloads in a data stream transferred
from AP2 to C2, C1 successfully overheard chunks a,c,d and
e, and cached them in a chain with their hashes Ha,Hc,Hd
and He. Note that chunk b is missing due to the probabilistic
wireless overhearing. AP1 later on had a similar data object
with chunks a,b,c,d and f to send to C1. When C1 received
chunk a, it found that a had a matching chunk on the chain,
and then sent to AP1 the chunk predictions that include hashes
of subsequent chunks c, d and e on the chain. In the outgoing
data, AP1 found that the chunks c and d have matching hashes

AP1 AP2

a b c d
a c d

e
e

a b c d f

a

a,Ha c,Hc d,Hd e,Hee

C1 C2

data

data

(a) Overhearing and caching

AP1 AP2

a b c d f

a,Ha c,Hc d,Hd e,Hee

Ic,Hc

Id,Hd

Ie,He

b IcId f

C1 C2

(b) Prediction and RE

Fig. 2. PRECO in multiple AP infrastructure.

with the predictions, and replaced them with the shims “Ic”
and “Id”. C1 can reconstruct the full packet using the cached
chunks corresponding to the predictions. Since the sizes of
prediction and shim are far less than the chunk size, PRECO
reduces the number of bytes transferred in the air and improves
overall network throughput. In contrast, REfactor [12] requires
overhearing notification communication between AP1 and
AP2. AP1 needs to periodically obtain AP2’s cache content
for C1, which contains entries and estimated overhearing
probabilities of all chunks presumably overheard by C1, which
cost a mount of network overhead.

PRECO needs to resolve the following issues:

• How to conduct chunking and caching for efficient redun-
dant data detection in data transmission? (Section III-B)

• How to choose a stream and a matching chunk for predic-
tion to increase the prediction accuracy? (Section III-C)

B. Chunking and Caching

1) Chunking Algorithm: PRECO divides the payload of a
packet into chunks by a content-based chunking algorithm.
This algorithm determines the chunk boundaries using content
instead of offset, so localized changes in the data stream only
affect chunks that are near the changes, which enables efficient
and robust duplicate content identification across different
data objects. A number of content-based chunking algorithm
have been proposed, including Rabin fingerprinting [20], [10],
MAXP [14], SAMPLEBYTE [17], and XOR-based rolling
hash [19]. Like REfactor [12], PRECO uses MAXP [14] to
define chunk boundaries, because MAXP provides uniformly
distributed chunk boundaries across the payload and imposes a
lower bound on chunk length and low computational overhead.
MAXP selects a position as chunk boundary if its hash value is
the maximum (or minimum) over all hashes computed over the
p-byte region centered at that position. The packet payload is
divided into chunks by these boundaries, as shown in Figure 1.
The expected chunk size is p and all chunks must have length
at least �p/2� except the last one at the end of payload [27].
We ignore the last chunk if its size is less than �p/2� such
as the chunk following Chunk2 in Figure 1. p should be
significantly larger than the sum size of a chunk hash and shim
in PRECO because the effective bandwidth saving resulted
from a successful chunk prediction is the chunk size minus
the sum size. Addtionally, we also limit the maximum length
of a chunk to Bmax bytes. The determination of chunk size
should consider the trade-off between prediction overhead and
bandwidth savings. A larger chunk size reduces the number of
prediction messages, while a smaller chunk size can increase
the detection efficiency of redundant bytes.

2) Caching Received and Overheard Chunks: In PRECO,
wireless nodes overhear the transmissions of TCP streams.
PRECO identifies each stream by (src, dst, src port, dst port)
tuple, referred to as stream ID. A wireless node maintains
a stream list to record the IDs of TCP streams, which it
is currently receiving and overhearing. When a new packet
arrives, the node checks the list to determine whether the
packet is from a new stream or an existing stream. If the
packet is from an existing stream, its chunks are linked with
previously overheard chunks in the same stream. Otherwise,
the node creates an entry for the new stream in the list
and caches the chunks of the packet. A timeout period is
specified for each entry, and is reset every time when a new
packet is received from the stream of that entry. It ensures the
transmission time locality of chunks in the same chain. An
entry is deleted if no packets from the corresponding stream
are overheard or received within the timeout period.

Recall that a stream consists of packets, a packet consists
of chunks, and a chunk consists of data bytes. The wireless
nodes store the overheard/received chunks in their local chunk
caches along with the hashes and sequence numbers of the
chunks. A chunk’s sequence number is the sequence number
of its containing TCP packet plus the offset of the chunk in
the packet payload. The chunks of packets from the same TCP
stream are linked into a chain in the order of their sequence
numbers, as shown in Figure 1. Also, any byte in the chunk
has a sequence number which is the chunk’s sequence number
plus the offset of the byte in the chunk. The chunks on the
chain may not be consecutive data in the stream, because of
missing data due to the probabilistic overhearing and ignored
chunks by the chunking algorithm. Still, the node in a multi-
hop wireless network can have a chance to fill the missing
data incurred by the probabilistic overhearing, since it may
overhear the same packet over different hops.

The wireless nodes may receive/overhear the same packet
multiple times, either incurred by retransmission mechanisms
in 802.11 MAC and TCP protocols, or because the nodes
in multiple-hop networks can overhear the transmission of
a packet over different hops. To detect duplicate packets,
PRECO stores a packet’s TCP sequence number along with its
chunks in the cache. PRECO considers a packet to be duplicate
if it has repeated TCP sequence number in the stream. By
ignoring duplicate packets, PRECO ensures that only a single
copy of the packet is chunked and stored, and thus avoids
unnecessary processing and storage cost.

C. Prediction-Based Redundancy Elimination

1) Prediction Algorithm: Upon receiving a new packet
from the sender, the receiver performs chunking and computes
the hash for each chunk in the payload, and then looks up
these hashes in its local chunk cache. If a chunk’s hash is
found, it means that a duplicate chunk exists in the cache.
Based on the chains which contain the matching chunks, the
receiver finds the chunks which would mostly likely appear in
the next incoming data, and sends to the sender their hashes
as predictions.

Below, we explain how to find the chunks as predictions.
The previous approach PACK [19] makes predictions for every

single chunk match because new chunks arrive sequentially in
TCP stream. Every time when a matching chunk is found, it re-
trieves a sequence of chunks subsequent to the matching chunk
on the chain for predictions. Such a prediction algorithm, how-
ever, is not efficient for PRECO. This is because in PRECO,
a packet may have multiple chunks that have duplications in
the cache. If the prediction is made for every chunk match,
multiple sequences of chunks, each following a matching
chunk, would be retrieved for predicting the same incoming
data, which incurs extra prediction transmissions. Moreover,
these matching chunks may be scattered over different chains,
but some chains may not have much in common with the
data object in transmission, and predictions from those chains
are useless. To address these issues, PRECO determines one
matching chunk, which leads to the chunk sequence most
likely to appear in the future incoming data, and uses the
sequence of chunks following it on the chain for prediction.
We refer to such a matching chunk as a prediction anchor.

To determine the best prediction anchor, we first find the
chain that has “maximum matching” with the received chunks
and then decide which matching chunk in it is used as the
prediction anchor. For this purpose, a straightforward method
is to choose the chain which contains the largest total size
of matching chunks, and use the largest one among all the
matching chunks on that chain as the prediction anchor. In
detail, denote the chains by L1,...,Lk. Suppose each chain Li
has matching chunks {Ci,1,Ci,2, ...,Ci,li }. Let |Ci,m| be the size
of chunk Cim. The total size of matching chunks in chain Li

is S i =
li∑

m=1
|Ci,m|. Suppose S n = max{S i|1 ≤ i ≤ k}, then

the chain Ln is selected, and the matching chunk with size
of max{|Cn,i|1 ≤ i ≤ ln} is used for prediction. This method,
however, may not generate efficient predictions since it does
not consider the distances between the matching chunks in
TCP stream. The effectiveness of prediction-based RE comes
from the continuity of duplicate content. If the matching
chunks are loosely scattered on the chain with large gaps
between each other, the chain is not well matched with the
data object in transmission and can provide poor predictions.
Thus, we introduce a chunk-merging approach to find the
“maximum matching” chain with the consideration of the
distances between matching chunks.

Chunk-merging based prediction Suppose Ci,m and Ci,m+1

are two neighboring matching chunks on the same chain Li and
Ci,m is before Ci,m+1 in terms of receiving order. We define the
distance between two chunks Ci,m and Ci,m+1 (denoted by d) as
the difference between the sequence number of the last byte of
Ci,m and the first byte of Ci,m+1. We set a threshold dT for the
distance. When d reaches dT , we can ignore the connection
between Ci,m and Ci,m+1 and only consider the larger chunk.
If the distance d is less than a threshold dT , we merge them
into a virtual chunk C′m,m+1 with a virtual size computed by

|C′m,m+1| = (1 − d
dT

)(|Ci,m| + |Ci,m+1|) + d
dT

max{|Ci,m|, |Ci,m+1|} (1)

Here the virtual chunk size actually is a measure of matching
degree. As we can see, when d → 0, |C′m,m+1| → |Ci,m|+|Ci,m+1|.
That is, when the distance between two chunks (Cm and Cm+1)

decreases, the matching degree between the chain and these
two chunks gets close to the matching degree achieved by
a duplicate chunk of size |Ci,m| + |Ci,m+1|. Similarly, when
d → dT , the matching degree is close to that achieved by
the larger matching chunk, which means the combination of
two chunks does not have additional effect on the matching
degree anymore when their distance becomes large enough.

Assume a list of matching chunks of a packet {Ci,1, Ci,2,
Ci,3,...} on a chain are numbered in the order of their sequence
numbers. We need to calculate the virtual size of their merged
virtual chunk. The merging is conducted iteratively from Ci,1
in sequence until no two neighboring chunks have a distance
less than dT . If Ci,1 and Ci,2 can be merged (i.e., their distance
is less than dT), they are replaced with the merged virtual
chunk C′1,2 in the list, and the merging iteratively starts from
C′1,2. The distance between C′1,2 and Ci,3 is equal to the distance
between Ci,2 and Ci,3. If Ci,1 and Ci,2 cannot be merged, Ci,1
is ignored and the merging iteratively starts from Ci,2.

For a received packet, it may have matching chunks in
several chains in the receiver’s local cache. For each of these
chains, PRECO calculates the virtual size of the merged virtual
chunk using the method introduced above. It then chooses
the largest chunk as the prediction anchor among unmerged
matching chunks and virtual chunks, and uses the chunks
subsequent to it on the chain for predictions.

Our chunk-merging based prediction enables to utilize mul-
tiple packets to improve the prediction accuracy. Instead of
attempting to make predictions at every time of receiving a
packet, the receiver can accumulate multiple packets from
a data stream before making predictions. With more chunks
from multiple packets, the chunk-merging approach can better
identify the concentration place of the matching chunks, which
indicates the chain matched best with the data stream being
received and accordingly the best position for choosing the
prediction anchor.

2) Prediction Transmission and Shim Decoding: For the
effectiveness of predictions, PRECO limits the data range
predicted from a prediction anchor by setting a prediction
window W. In the chunk sequence following the prediction
anchor, a chunk can be used for prediction only if the
distance between it and the prediction anchor is less than W.
The receiver retrieves the chunk hashes within the prediction
window, and uses them for chunk predictions. Each chunk
also is assigned with a prediction ID which is its sequence
number in the window. A chunk prediction includes a hash for
the expected incoming chunk. The receiver sends the chunk
predictions to the sender in a prediction message. The chunk
predictions in the same prediction message form a sequence.
The receiver also maintains a prediction cache for storing
predictions recently sent to the sender.

When receiving a prediction message from the receiver, the
sender extracts the chunk predictions and stores them into a
local prediction cache. It proceeds to compare the predictions
with its outgoing data. For each outgoing packet, the sender
performs the chunking algorithm (in Section III-B1) to divide
the payload into chunks, and tries to match the predictions
with these chunks. If it finds that a chunk matches with a
prediction, the sender replaces the content and insert a shim

instead, including the offset of the chunk in the packet and
the sequence number of the chunk in the prediction message.
Once receiving a packet containing a shim from the sender, the
receiver finds the chunk corresponding to the sequence number
in the shim, and reconstructs the full packet by replacing the
shim with the chunk.

IV. Redundancy-Aware Source Routing InWirelessMesh
Networks

In wireless mesh networks, every mesh router shares In-
ternet access by communicating with a few gateway nodes
and provides Internet connectivity to mobile clients. It is very
promising to improve the throughput of wireless mesh net-
works by eliminating the redundancy in the traffic transferred
from the gateways to mesh routers. In this section, we consider
to deploy PRECO as a primitive IP-layer service on all nodes
in wireless mesh networks, and exploit the benefits of routing
to maximize the opportunity to reduce redundant content.

C1 C2

Gateway

a b c

a b c d

a b c d

a b c d

e

ETT=3

ETT=4

ETT=2

ETT=3

ETT=3
ETT=4

A1 A2

A4
A5A3

Fig. 3. RE with on-path caching.

Figure 3 gives an example
to show the benefit of the
redundancy-aware source rout-
ing. Each link is labeled with
its ETT (Expected Transmis-
sion Time) metric [28] defined
as the expected MAC layer du-
ration for a successful trans-
mission. Client C1 requests a
data object D1 consisting of
chunks a, b, c and d, and
the gateway chooses the route
“Gateway−A1 − A3” to trans-
fer the data object. Traditional
ETT-based source routing protocol chooses the route with the
minimum sum of ETT of links on the path. Thus, when C2
requests a data object D2 consisting of chunks a, b, c and e,
the gateway chooses the route “Gateway−A2− A4− A5” with
ETT metric of 8. Suppose each router on a path caches the
transferred data object and is capable of removing redundant
content. Then, if the route “Gateway−A1 − A3 − A5” is used
for transferring D2, the redundant content a, b, c can be
removed over links “Gateway−A1” and “A1 − A3”, and only
e is required to transfer over these links. Suppose the size of
each chunk is equal to a packet size, then according to the
computation of ETT, the time required to transfer D2 over
link “Gateway−A1” and “A1 − A3” is 3 and 4 respectively.
The total ETT for D2 is 3+4+16=23. The traditional ETT-
based route “Gateway−A2 − A4 − A5”, however, has a total
ETT for D2 is 8+12+12=32.

A. Redundancy-aware Routing Metric

We propose a “redundancy-aware estimated transmission
time” (RETT) metric of a link derived from the ETT met-
ric [28]. ETT is computed by ETX× S

B where ETX [29] is
Expected transmission Count which estimates the number of
retransmissions needed to deliver a packet over the link, S is
the average packet size and B is the bandwidth. Suppose that
a packet has an average redundancy ratio α compared with
the packet cache over a link. Then, the expected transmission

time for the packet with the consideration of redundancy
elimination over the link, i.e., RETT, can be computed by

RETT = ETX × S (1 − α)

B
(2)

This link metric can more accurately reflect the transmission
time for content transmission taking advantage of the redun-
dant content in the routers. However, it also has problems.
First, it ignores the overhead of prediction transmissions.
Second, the redundancy ratio α varies among packets and it
depends on the content of the packets. Third, it is extremely
expensive for a routing protocol to compute an optimal route
for every single packet. To handle these problems, our solution
is to consider optimal routing for a whole TCP stream or large
bulk-data in the stream, such that an optimal route can be
decided for a group of packets which are most likely to have
the similar redundancy profile. For the prediction transmission
overhead, since a prediction message contains multiple chunk
predictions. The overhead of a prediction message is amortized
over all chunk predations in the message. Moreover, each
chunk prediction has a much smaller size (eg., 32bit hash +
10bit prediction ID) than the average chunk size (eg., 256byte).
Therefore, the prediction overhead is negligible, especially
when the data has sufficient redundancy. The RETT metric
of a route is the sum of the link metrics. It predicts the total
amount of time it would take to send the bulk data along a
route, taking into account link-level RE.

B. Routing Protocol
Based on the above discussions, we propose a redundancy-

aware source routing protocol for a gateway to forward traffic
from the Internet to the mesh network.

For RETT computation, we can use the method in previous
work [29] to compute ETX of every link. Each mesh router
broadcasts link probes of a fixed size at an average period, and
computes the delivery ratio by counting the number of probes
received during a time window. Then, the routers report the
statistics back to the gateway. To obtain the redundancy ratio
for a bulk-data, the gateway stores all the transferred bulk-data
along with their routing path information. Using the previously
introduced chunking algorithm, the gateway also divides each
transferred bulk-data into small chunks, computes the hash
for each chunk, and stores them in its chunk cache. When
forwarding a new bulk-data, the gateway divides it into chunks
and look ups their hashes in the chunk cache to find the bulk-
data in the cache which has the most number of duplicate
chunks with the new bulk-data, denoted by Nmax. Suppose the
new bulk-data has N number of chunks. Then, the redundancy
ratio of the new bulk-data is α = Nmax/N.

Suppose that the route for the bulk-data that has Nmax
number of duplicate chunks consists of nodes n1, n2,...,nk.
With PRECO that performs RE based on receiver’s prediction,
any link with ni as the receiving node can possibly obtain the
benefit of RE. To ensure negligible prediction transmission
cost compared with the redundancy to be removed, we can
give a threshold αT . That is, if Nmax/N > αT , RETT metric is
computed by Equation (2), otherwise, it is equal to ETT. After
computing the RETT metric of all links, the gateway runs
Dijkstra’s algorithm to find the route with the lowest RETT.

Fig. 4. Two different videos.

In the above, the computation of the link RETT metric in
the proposed routing protocol does not consider the effect
of overheard content to redundancy elimination of PRECO.
It only considers the effect of data cached by the on-path
transfer. Some links may not have on-path nodes but they
have nodes which overheard the duplicate content. With these
overhearing nodes as receiving nodes on links and redundancy
elimination service, these links may have smaller expected
transmission time than their ETT, and thus can be used to
find a better route. However, to compute RETT for these
links, the gateway needs to have an accurate estimate of the
overhearing probability of nodes, which has been shown to
be difficult. Because of this, our routing protocol computes
the routes based on that the gateway has the definite routing
information of previously transferred bulk data. Meanwhile,
the benefit of content overhearing can be opportunistically
exploited as introduced previously in our RE method. That
is, each receiver predicts the data that will be transmitted to
it based on its received and overheard data in its cache for
redundancy elimination in data transmission.

V. Performance Evaluation

In this paper, we developed a simulator using Java to
conduct real trace driven simulation experiments to evaluate
the performance of PRECO. We collected wireless data traces
from running the YouTube App on two smartphones, which are
iPhone 6 plus and Xiao Mi 3. In order to capture the traffic, we
let the traffic go through a laptop (Lenovo T420 with Windows
10) and used the Wireshark software to capture it. Specifically,
we connected the laptop to the Internet with the wire cable and
set up the Hotspot mode on the laptop. The two smartphones
are connected with the laptop using WiFi shared by the laptop.
As a result, the two smartphones can access the Internet.

The two smartphones watched the same randomly selected
videos for 20 minutes, and then watched two different videos
with similar contents for 10 minutes, as shown in Figure 4.
This process repeated twice. We collected data 60 minutes a
day for 7 days in total. The data trace towards iPhone 6 plus
is denoted as Trace1 and the other one is denoted as Trace2.
Finally, we got 1.71GB data for Trace1 and 1.64GB for
Trace2. We compared PRECO with EndRE [17], Asymmetric
Caching (AC) [11] and REfactor [12] using the following
metrics:

• RE efficiency. It is the ratio of the total bytes of reduced
redundant data to the total data volume and computed by
(VNo−RE − VRE)/VNo−RE , where VNo−RE is the total data
volume and VRE is the total volume of the reduced data.
A higher RE efficiency means a higher prediction rate,
eventually, a higher prediction accuracy.

TABLE I
Point-to-Point Bandwidth Savings Ratio

No-RE
(MB)

PRECO
(MB)

Network
overhead (MB)

Bandwidth
saving ratio

Trace 1 1714.2 1420.1 18.1 16.10%
Trace 2 1643.5 514.7 37.2 66.42%

• Network overhead. It is calculated by VOverhead
Vdata

, where
VOverhead is the data volume of prediction messages and
hashes in content transmission and Vdata is the size of the
total transmitted content data.

• Bandwidth saving ratio. It is computed by (VNo−RE − VRE −
VOverhead)/VNo−RE in order to show the final bandwidth
saving caused by both RE and network overhead reduction.

A. Simulation Setup

We evaluate the efficiency of PRECO with three different
simulation scenarios. First, we deploy an AP infrastructure
with one associated client in our simulator to evaluate the
performance of PRECO without content overhearing. Then,
we simulate a small network with two APs, each with one
associated client, to evaluate the performance of PRECO using
content overhearing. Finally, we built a wireless lattice-type
mesh network to evaluate the benefits of redundancy-aware
routing. PRECO uses MAXP to find the chunk boundaries
and the trace is divided into chunks by these boundaries.
We limited the chunk sizes to [256,1024] bytes. We set the
merging distance threshold dT = 1500 bytes, and the initial
prediction window size W0 = 4KB.

B. Point-to-Point RE Efficiency

In this simulation, the AP node successively transfers
Trace1 and Trace2. PRECO enables the client to utilize
Trace1 in its cache to make predictions when AP started to
transmit Trace2. The AP removed redundant bytes based on
the predictions from the client. Table I shows experimental
results for the different metrics without redundancy elimination
(“No-RE”) and with PRECO.

As we can see, for Trace2, PRECO reduces the traffic
volume from 1.64GB to 0.51GB. Additionally, when transfer-
ring Trace1, there is also considerable redundancy, over 16%,
detected by PRECO even without previous data transmission.
This indicates such redundancy exists in Trace1 itself.

Compared with the significant traffic reduction, the network
overhead is negligible. We can see that PRECO is effective in
reducing bandwidth cost for both Trace1 and Trace2. Further-
more, when transferring Trace2, PRECO can achieve higher
bandwidth saving ratio, compared with Trace1 transmission.
This is because during Trace2’s transmission, PRECO can
reduce the redundant data not only using its own previous
traffic but also using the previous traffic of Trace1.

C. Benefits of Content Overhearing

In this simulation, two AP nodes, donated by AP1 and AP2,
and two clients, denoted by C1 and C2, are deployed. AP1

transfers the Trace1 to C1, and C2 works in promiscuous mode
so that it can overhear the transmission between AP1 and C1.
At the same time, AP2 transfers Trace2 to C2. We measured

0%

10%

20%

30%

40%

50%

60%

20M 40M 60M 100M 200M

PRECO EndRE AC REfactor

R
E

ef
fi

ci
en

cy

Cache size at the receiver

(a) Different receiver’s cache size

0%

10%

20%

30%

40%

50%

60%

0% 20% 40% 60% 80% 100%

PRECO EndRE AC REfactor

Overhearing probability

R
E

ef
fi

ci
en

cy

(b) Different overhearing probability

Fig. 5. RE efficiency.

the RE efficiency, network overhead and bandwidth saving
ratio of PRECO, EndRE, AC and REfactor with different cache
sizes and overhearing probabilities. Unless otherwise specified,
the overhearing probability was set to 80% and the receiver’s
cache size was set to 200MB.

Figure 5(a) and 5(b) show respectively the RE efficiency
of different methods with the cache size at the receiver
varying from 20MB to 200MB, and that with the overhearing
probability changing from 0% to 100%. We see that the
RE efficiency follows PRECO>REfactor>EndRE>AC. EndRE
and AC generate lower RE efficiency because they do not sup-
port overhearing, and they miss the opportunities to eliminate
redundancy based on overheard traffic. In addition to using
overhearing, PRECO can make more accurate prediction on
redundant data than AC. AC chooses the feedback message in
receiver’s cache by finding the matched flow segment with
the maximum number of matched chunks compared with
the received flow. PRECO’s prediction algorithm used in the
receiver considers not only the number of matching chunks but
also the distance between them, which provides more accurate
prediction than AC. We further see that though REfactor
also supports overhearing, it produces lower RE efficiency
than PRECO. REfactor makes decision of the chunk removal
based on the overhearing probability estimation, which may
not be accurate since the estimation result is vulnerable to
the dynamic changes in the network. If the estimation is
not accurate, REfactor may make the wrong decision on
redundancy elimination.

From Figure 5(a), we can also find that with the increase of
the cache size, the RE efficiency increases. The reason is that
cache with a larger size will cache more chunks, which will
improve the probability of redundancy elimination and then
RE efficiency. Also, we see that, for PRECO and REfactor, the
RE efficiency increases with overhearing probability. This is
because that higher overhearing probability brings much more
redundant chunks from other transmissions, which improves
the prediction accuracy and then the RE efficiency.

Figure 6(a) and Figure 6(b) show respectively the network
overhead of different methods with cache size varying from
20MB to 200MB and that with overhearing probability chang-
ing from 0% to 100%. We see from both figures, REfactor has
the highest network overhead among all these RE methods.
The reason is that in REfactor, in order to estimate the
overhearing probability for transmitted data, two APs need to
communicate with each other, which incurs a large amount of
network overhead. For EndRE, the network overhead comes

0%

2%

4%

6%

8%

20M 40M 60M 100M 200M

PRECO EndRE AC REfactor
N

et
w

o
rk

 o
ve

rh
ea

d

Cache size at the receiver

(a) Different receiver’s cache size

0%

2%

4%

6%

8%

10%

0% 20% 40% 60% 80% 100%

PRECO EndRE AC REfactor

Overhearing probability

N
et

w
o

rk
 o

ve
rh

ea
d

(b) Different overhearing probability

Fig. 6. Network overhead.

0%

10%

20%

30%

40%

50%

20M 40M 60M 100M 200M

PRECO EndRE AC REfactor

B
a

n
d

w
id

th
sa

vi
n

g
 r

a
ti

o

Cache size at the receiver

(a) Different receiver’s cache size

0%

20%

40%

60%

0% 20% 40% 60% 80% 100%

PRECO EndRE AC REfactor

Overhearing probability

B
an

d
w

id
th

sa
vi

n
g

ra
ti

o

(b) Different overhearing probability

Fig. 7. Bandwidth saving ratio.

from the chunk hashes in content transmission. In AC, the
network overhead includes the chunk hashes in feedback
messages and content transmission. For PRECO, the network
overhead includes chunk hashes and IDs in prediction mes-
sages and IDs in content transmission. As a result, EndRE, AC
and PRECO generate far less network overhead than REfactor.
From Figure 6(a), we also find that with the cache size increas-
ing, the network overhead increases. For AC and PRECO, the
reason is that a cache with a larger size will bring more data
reduction and lead to more hash overhead in the transmission.
For REfactor, as the cache size increases, the sender will cache
more chunks and produce more overhead for overhearing
probability estimation. In EndRE, in order to offload the hash
computing from the receiver to the sender, the sender transfers
the chunk hashes of all data contents no matter whether the
data chunks are redundant or not, so its hash overhead keeps
constant. Figure 6(b) shows that the network overhead in
PRECO and REfactor increases with the increase of the over-
hearing probability. Higher overhearing probability produces
higher RE efficiency, which leads to more hashes transmitted
because of data reduction. For EndRE and AC, the increase
of overhearing probability has no effect in their network
overheads because they do not consider content overhearing.

Figure 7(a) and Figure 7(b) show respectively the bandwidth
saving ratio of different methods with cache size at the receiver
varying from 20MB to 200MB, and that with the overhearing
probability changing from 0% to 100%. We see that the band-
width saving ratio follows PRECO>REfactor>EndRE>AC.
The result is consistent with that in Figure 5(a) and Figure 5(b)
since the bandwidth saving is mainly caused by RE efficiency
and the network overhead only accounts for a very small part
of the bandwidth cost.

D. Benefits of Redundancy-aware Routing
In the simulation, we deployed a mesh network with 5 rows

and 5 columns in total. We mark the node as Am,n(m, n ∈

0.8

1

1.2

1.4

1.6

1.8

0% 20% 40% 60% 80% 100%

ETT-based routing
Redundancy-aware routing
Redundancy-aware routing+overhearing

Overhearing probability

N
or

m
al

iz
ed

th
ro

ug
hp

ut

(a) Different overhearing probability

0.5

0.8

1.1

1.4

1.7

0% 20% 40% 60% 80% 100%

ETT-based routing PROCEO
EndRE AC
REfactor

N
or

m
al

iz
ed

th
ro

ug
hp

ut

Overhearing probability

(b) Different overhearing probability

Fig. 8. Normalized throughput vs. overhearing probability.

{0, 1, 2, 3, 4}), where m and n are the row and column index
respectively. A0,0 is the gateway of this mesh network. The
gateway as the source node sends the packets to client C1,
associated with A4,3, client C2, associated with A4,4, and
client C3, associated with A3,4. In this scenario, we set the
overhearing coverage to 1. It means that only the sender node’s
neighbor node can overhear the data transmission, which
confirms the practical scenario since the nearest nodes have
much more chance to overhear the data sent by the sender. C2

can overhear the data transmission from A4,3 to C1 and A3,4 to
C3. The gateway sends the Trace1 to C1 and C3 successively,
at the same time, it sends Trace2 to C2. We care about the
network throughput from A0,0 to C2. The average date rate for
each link varies from 800Kps to 1200Kps.

In order to investigate the benefits of our proposed
redundancy-aware routing protocol, we deployed three routing
approaches. (1) ETT-based routing: the gateway determines
the optimal route to a receiver using ETT metric, and there
is no network-wide PRECO deployment to perform RE over
every links; (2) redundancy-aware routing without content
overhearing: network-wide PRECO is deployed but without
content overhearing, i.e., only on-path caching is enabled for
RE, and the gateway computes the RETT metric to select
the optimal route to a receiver; (3) redundancy-aware routing
with content overhearing: it is like the second approach except
that the content overhearing is enabled in PRECO. The cache
size at the receiver was set to 200MB. We normalized the
throughput (bytes/second) of redundancy-aware routing by that
of the ETT-based routing.

Figure 8(a) shows the normalized throughput from the gate-
way to client C2 when the overhearing probability was varied
from 0% to 100%. From the figure, we can see that compared
with the ETT-based routing, our proposed redundancy-aware
routing can produce 20% more throughput. This is because
unlike the ETT-based routing, the redundancy-aware routing
uses RE. That is, the gateway steers the traffic through the
nodes with high redundancy, which helps reduce transmission
time and improve throughput. When the content overhearing
is considered, the throughput is further improved. We can
see as the overhearing probability increases, the throughput
increase grows. When the overhearing probability is 90%,
the throughput is improved over 60%. The reason is that
as the overhearing probability increases, the node receives
more redundant chunks from other transmissions, which will
improve the prediction accuracy in PRECO and further reduce
the redundant data. We also tested our redundancy-aware

routing protocol using different RE methods. The normalized
throughput between the gateway and the client is plotted
in Figure 8(b). We see that compared with the ETT-based
routing approach, both the RE approaches can improve the
throughput due to the redundancy-aware routing and RE
methods. We also see that the throughput improvement fol-
lows PRECO>REfactor>EndRE>AC. This is because high
RE efficiency means less data transmission at each link,
which reduces more transmission time on the total path and
produces higher throughput improvement. Since the RE ef-
ficiency follows PRECO>REfactor>EndRE>AC, the PRECO
outperforms other methods on throughput improvement. The
throughput improvements grow in PRECO and REfactor as
the overhearing probability increases due to the same reasons
as in Figure 5(b).

VI. Conclusion

In this paper, we proposed a prediction-based IP-layer RE
method with content overhearing named PRECO for wireless
networks. In PRECO, wireless receivers compare incoming
packets with previous received or overheard packets, predict
future incoming data chunks, and send their hashes to the
senders. A wireless sender removes redundant data chunks
that already exist in the receiver’s cache by comparing the
hashes of outgoing data chunks with the predictions from
the receiver. We also proposed novel prediction algorithms
that allow PRECO to effectively improve prediction accuracy
and overall bandwidth saving. PRECO is advantageous than
previous overhearing-based RE methods in two aspects. First,
by prediction-based IP-layer RE, PRECO does not require
overhearing probability estimation. Second, it does not need
cache content communication and complex coordination a-
mong wireless nodes when being deployed in multiple AP
infrastructures and mesh networks. Thus, it enables efficient
network-wide RE with content overhearing for wireless net-
works. We exploited the network-wide IP-layer service in
wireless mesh networks, and proposed a redundancy-aware
routing protocol to further enhance its benefit. Trace-driven
simulation results show that PRECO provides significant per-
formance benefits in comparison with other RE methods. In
the future work, we will explore how to enable the gateway
to efficiently learn the overhead data streams of all nodes for
route determination in mesh networks.

Acknowledgements

This research was supported in part by U.S. NSF grants
ACI-1661378 and CNS-1254006, and Microsoft Research
Faculty Fellowship 8300751.

References

[1] C. Qiu, H. Shen, and L. Yu, “Energy-efficient cooperative broadcast in
fading wireless networks,” in Proc. of INFOCOM, 2014.

[2] A. Sarker, C. Qiu, and H. Shen, “A decentralized network with fast
and lightweight autonomous channel selection in vehicle platoons for
collision avoidance,” in Proc. of MASS, 2016.

[3] J. Liu, L. Yu, H. Shen, Y. He, and J. Hallstrom, “Characterizing data
deliverability of greedy routing in wireless sensor networks,” in Proc.
of SECON, 2015.

[4] Z. Li, H. Shen, and K. Chen, “Learning network graph of sir epidemic
cascades using minimal hitting set based approach,” in Proc. of ICCCN,
2016.

[5] A. Sarker, C. Qiu, H. Shen, A. Gil, J. Taiber, M. Chowdhury, J. Martin,
M. Devine, and A. Rindos, “An efficient wireless power transfer system
to balance the state of charge of electric vehicles,” in Proc. of ICPP,
2016.

[6] L. Yan, H. Shen, J. Zhao, C. Xu, F. Luo, and C. Qiu, “CatCharger:
Deploying wireless charging lanes in a metropolitan road network
through categorization and clustering of vehicle traffic,” in Proc. of
INFOCOM, 2017.

[7] S. He, Z. Lu, X. Wen, Z. Zhang, J. Zhao, and W. Jing, “A pricing
power control scheme with statistical delay qos provisioning in uplink of
two-tier ofdma femtocell networks,” Mobile Networks and Applications,
vol. 20, no. 4, pp. 413–423, 2015.

[8] S. He, Z. Lu, X. Wen, Z. Zhang, Y. Sun, and L. Zhang, “Energy-efficient
power allocation with qos guarantee in ofdma wireless networks,” in
Proc. of WPMC, 2014.

[9] M. Afanasyev, D. G. Andersen, and A. C. Snoeren, “Efficiency through
eavesdropping: link-layer packet caching,” in Proc. of NSDI, 2008.

[10] F. R. Dogar, A. Phanishayee, H. Pucha, O. Ruwase, and D. G. Ander-
sen, “Ditto: a system for opportunistic caching in multi-hop wireless
networks,” in Proc. of MobiCom, 2008.

[11] S. Sanadhya, R. Sivakumar, K. Kim, P. Congdon, S. Lakshmanan, and
J. Singh, “Asymmetric caching: improved network deduplication for
mobile devices,” in Proc. of MobiCom, 2012.

[12] S.-H. Shen, A. Gember, A. Anand, and A. Akella, “Refactor-ing content
overhearing to improve wireless performance,” in Proc. of MOBICOM,
2011.

[13] L. Chen, H. Shen, and S. Platt, “Cache contention aware virtual machine
placement and migration in cloud datacenters,” in Proc. of ICNP, 2016.

[14] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy
in network traffic: findings and implications,” in Proc. of SIGMETRIC-
S/Performance, 2009.

[15] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet
caches on routers: the implications of universal redundant traffic elimi-
nation,” in Proc. of SIGCOMM, 2008.

[16] Y. Hua, X. Liu, and D. Feng, “Neptune: Efficient remote communication
services for cloud backups,” in Proc. of INFOCOM, 2014.

[17] B. Agarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis,
C. Muthukrishnan, R. Ramjee, and G. Varghese, “Endre: An end-system
redundancy elimination service for enterprises,” in Proc. of NSDI, 2010.

[18] A. Anand, V. Sekar, and A. Akella, “Smartre: an architecture for coor-
dinated network-wide redundancy elimination,” in Proc. of SIGCOMM,
2009.

[19] E. Zohar, I. Cidon, and O. O. Mokryn, “The power of prediction: cloud
bandwidth and cost reduction,” in Proc. of SIGCOMM, 2011.

[20] N. T. Spring and D. Wetherall, “A protocol-independent technique for
eliminating redundant network traffic,” in Proc. of SIGCOMM, 2000.

[21] “Riverbed networks : Wan optimization.”
http://www.riverbed.com/solutions/optimize, [Accessed in Sep. 2016].

[22] “Juniper networks: Application acceleration.”
http://www.juniper.net/us/en/products-services/application-acceleration/,
[Accessed in Sep. 2016].

[23] “Cisco wide are application acceleration services,”
http://www.cisco.com/en/US/products/ps5680/
Products Sub Category Home.html, [Accessed in Sep. 2016].

[24] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[25] L. Yu, K. Sapra, H. Shen, and L. Ye, “Cooperative end-to-end traffic
redundancy elimination for reducing cloud bandwidth cost,” in Proc. of
ICNP, 2012.

[26] Y. Hua, W. He, X. Liu, and D. Feng, “Smarteye: Real-time and efficient
cloud image sharing for disaster environments,” in Proc. of INFOCOM,
2015.

[27] A. B. N. Bjorner and Y. Gurevich, “Content-dependent chunking for
differential compression, the local maximum approach,” Microsoft Re-
search, Tech. Rep. 109, 2007.

[28] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and eval-
uation of an unplanned 802.11b mesh network,” in Proc. of MobiCom,
2005.

[29] D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput path
metric for multi-hop wireless routing,” in Proc. of MobiCom, 2003.

